Log in

LTV prediction

Lifetime value (LTV) shows the revenue generated by a new audience via subscriptions, purchases, in-app impressions, and any custom payments. LTV prediction allows you to forecast probable revenue, evaluate the ROI, and determine in advance the rate of success for the chosen monetization model. With such a forecast, you can easily identify inefficient channels and skillfully allocate the budget.

How it works#Copy URL

MyTracker makes a forecast using machine learning models. Its prediction mechanism is flexible and can adjust based on the current stage of the app's life cycle, amount of historical data available, and traffic volume.

You can see a forecast the very next day after users first visit the site or install your app, and watch it become more accurate by the day, and fixed on ninth day.

LTV can be predicted for periods for 1, 2, 3, 6 months, for 1 and 2 years after the site first visit or app installation. A forecast can show your revenue both as a whole and for the individual revenue type:

  • Purchases. LTV prediction is only possible for verified in-app payments.
  • Subscriptions. LTV prediction is only possible for verified in-app payments.
  • In-app ads. LTV prediction is only possible for revenue from in-app ads. LTV prediction based on in-app ads revenue is supported for partners Applovin, AdMob, MoPub, myTarget, and IronSource.
  • Custom revenue. Revenue loaded via the S2S API, for example, web payments, offline purchases, or WeChat payments. LTV prediction is possible for sites and mobile apps.

The iOS 14+ revenue forecast is built using a separate predictive model based on SKAdNetwork data. For more details, refer to the SKAN LTV predictionsection

Features and restrictions

  • Predictive models show zero LTV for cohorts where users did not make any payments or see any in-app ads in the first eight days after users first visit the site or install the app. The actual, LTV in this case might be greater than zero, because some users start generating revenue after eight-day mark (which is especially likely for apps with deferred monetization). The first group models can partially address this issue by using statistical indices, but the forecast accuracy will be reduced.
  • An LTV will be overstated if temporary discounts or promos were active in the site or app when the model was learning, with this unusual spike in payments leading to an overly optimistic prediction.
  • Having increased traffic volume at the time of learning may also cause prediction errors. It can be a result of being featured in the App Store or Google Play, ad campaigns, PR or other external activities. On the one hand, such an increase may lead to a higher number of installs and a reduced paying audience. But on the other hand, it may drive up views of in-app ads.
  • Significant prediction errors might occur if there is a marked change in the monetization scheme, prices, availability of merchandise, etc., as the previous predictions did not reflect it, and the new ones would need time to learn. The re-learning will take from 8 days to 6 months, depending on the scope of the changes.
  • The accuracy will be reduced if you have disabled the ads for the first few days to retain the audience.
  • It is more likely that our predictive models will somewhat understate the LTV rather than overstate it in order to minimize the cost of error.

Data delays from the ad monetization partner can take several days, which may reduce the accuracy of forecasts in the first few days after the app installation. For more details, see the Partners section.

How to use#Copy URL

  1. Make sure that the web counter has been installed on your website or the MyTracker SDK has been integrated into your app.
  2. Activate payment verification if you are building a forecast for a mobile app. MyTracker will check each payment, keep track of subscriptions, and allow you to exclude fraud and developers’ test transactions from stats.
  3. Connect MyTracker account to your ad partner account. Wait for the ad data to roll in.
  4. In the Builder, select a report period. The forecast will be made for the cohort that visited your site for the first time or installed your app during the selected period.
  5. Add LTV Prediction metrics to your report. LTV can be forecast for periods for 1, 2, 3, 6 months, for 1 and 2 years after the site first visit or app installation. One report can show a forecast for different revenue types, a day-by-day chart, and a summary table for various cohorts, including breakdowns by Partner or Traffic source.

You can get reports with LTV forecast using Export API

Custom revenue LTV Prediction#Copy URL

Custom revenue involves other payment transactions that cannot be sent as ads revenue, in-app payments, or subscriptions. For example, it may be offline purchases, web payments, or WeChat payments. For more details, see Revenue tracking.

MyTracker tracks custom revenue through S2S API methods, allowing you to pass payments as with a device ID and the user ID. And if the usual LTV prediction is based on data obtained from physical devices (phones, laptops, etc.), the custom revenue prediction can be built on project users.

Remember that users can have one and more devices, and some switch or upgrade their devices. For details, see the User tracking section

To see custom revenue LTV Prediction, select metrics Users → LTV Prediction → Custom revenue LTV Prediction.

Was this article helpful?